Serveur d'exploration sur les peptides de défense des plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Studies on the phytomodulatory potential of fenugreek (Trigonella foenum-graecum) on bisphenol-A induced testicular damage in mice.

Identifieur interne : 000036 ( Main/Exploration ); précédent : 000035; suivant : 000037

Studies on the phytomodulatory potential of fenugreek (Trigonella foenum-graecum) on bisphenol-A induced testicular damage in mice.

Auteurs : Sarvnarinder Kaur [Inde] ; Shilpa Sadwal [Inde]

Source :

RBID : pubmed:31793690

Descripteurs français

English descriptors

Abstract

Bisphenol A (BPA), an organic synthetic compound and endocrine disruptor, which majorly cause deleterious effects on male reproductory system. Fenugreek (Trigonella foenum-graecum), associated with Leguminosae family is used as a herbal medicine with potent antioxidant properties. The present study was aimed to scrutinise the preventative role of fenugreek seeds aqueous extract (FSEt) on BPA-induced testicular damage in mice. Study included four different groups of male Balb/c mice: contol (C), fenugreek (FSEt), bisphenol A (BPA) and fenugreek + bisphenol A (FSEt + BPA). After two months of treatment, assessment of sperm parameters, antioxidant defence system, histopathological studies, germ cell count and gene expression of intrinsic apoptotic pathway were carried out. Administration of FSEt improved the damage caused by BPA as indicated by improved sperm parameters. FSEt-administered mice showed improvement in the histoarchitecture compared with BPA-administered animals. In addition, fenugreek treatment showed reduced levels of malondialdehyde and elevated levels of antioxidant enzymes. Expression studies of apoptotic markers revealed a significant decrease in the expression of Bcl-2 and significant increase in caspase-9 and caspase-3. However, FSEt restored the deleterious effects caused by BPA. The current findings plausibly might have promising protective role against BPA-induced testicular damage.

DOI: 10.1111/and.13492
PubMed: 31793690


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Studies on the phytomodulatory potential of fenugreek (Trigonella foenum-graecum) on bisphenol-A induced testicular damage in mice.</title>
<author>
<name sortKey="Kaur, Sarvnarinder" sort="Kaur, Sarvnarinder" uniqKey="Kaur S" first="Sarvnarinder" last="Kaur">Sarvnarinder Kaur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Panjab University, Chandigarh, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Panjab University, Chandigarh</wicri:regionArea>
<wicri:noRegion>Chandigarh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sadwal, Shilpa" sort="Sadwal, Shilpa" uniqKey="Sadwal S" first="Shilpa" last="Sadwal">Shilpa Sadwal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Panjab University, Chandigarh, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Panjab University, Chandigarh</wicri:regionArea>
<wicri:noRegion>Chandigarh</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31793690</idno>
<idno type="pmid">31793690</idno>
<idno type="doi">10.1111/and.13492</idno>
<idno type="wicri:Area/Main/Corpus">000177</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000177</idno>
<idno type="wicri:Area/Main/Curation">000177</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000177</idno>
<idno type="wicri:Area/Main/Exploration">000177</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Studies on the phytomodulatory potential of fenugreek (Trigonella foenum-graecum) on bisphenol-A induced testicular damage in mice.</title>
<author>
<name sortKey="Kaur, Sarvnarinder" sort="Kaur, Sarvnarinder" uniqKey="Kaur S" first="Sarvnarinder" last="Kaur">Sarvnarinder Kaur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Panjab University, Chandigarh, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Panjab University, Chandigarh</wicri:regionArea>
<wicri:noRegion>Chandigarh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sadwal, Shilpa" sort="Sadwal, Shilpa" uniqKey="Sadwal S" first="Shilpa" last="Sadwal">Shilpa Sadwal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Panjab University, Chandigarh, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Panjab University, Chandigarh</wicri:regionArea>
<wicri:noRegion>Chandigarh</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Andrologia</title>
<idno type="eISSN">1439-0272</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis (drug effects)</term>
<term>Benzhydryl Compounds (MeSH)</term>
<term>Caspase 3 (metabolism)</term>
<term>Caspase 9 (metabolism)</term>
<term>Drug Evaluation, Preclinical (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mice, Inbred BALB C (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Phenols (MeSH)</term>
<term>Phytotherapy (MeSH)</term>
<term>Plant Extracts (chemistry)</term>
<term>Plant Extracts (pharmacology)</term>
<term>Plant Extracts (therapeutic use)</term>
<term>Proto-Oncogene Proteins c-bcl-2 (metabolism)</term>
<term>Testicular Diseases (chemically induced)</term>
<term>Testicular Diseases (metabolism)</term>
<term>Testicular Diseases (pathology)</term>
<term>Testicular Diseases (prevention & control)</term>
<term>Testis (drug effects)</term>
<term>Testis (enzymology)</term>
<term>Testis (pathology)</term>
<term>Trigonella (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Apoptose (effets des médicaments et des substances chimiques)</term>
<term>Caspase-3 (métabolisme)</term>
<term>Caspase-9 (métabolisme)</term>
<term>Composés benzhydryliques (MeSH)</term>
<term>Extraits de plantes (composition chimique)</term>
<term>Extraits de plantes (pharmacologie)</term>
<term>Extraits de plantes (usage thérapeutique)</term>
<term>Maladies testiculaires (anatomopathologie)</term>
<term>Maladies testiculaires (induit chimiquement)</term>
<term>Maladies testiculaires (métabolisme)</term>
<term>Maladies testiculaires (prévention et contrôle)</term>
<term>Mâle (MeSH)</term>
<term>Phytothérapie (MeSH)</term>
<term>Phénols (MeSH)</term>
<term>Protéines proto-oncogènes c-bcl-2 (métabolisme)</term>
<term>Souris de lignée BALB C (MeSH)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Testicule (anatomopathologie)</term>
<term>Testicule (effets des médicaments et des substances chimiques)</term>
<term>Testicule (enzymologie)</term>
<term>Trigonella (composition chimique)</term>
<term>Évaluation préclinique de médicament (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Caspase 3</term>
<term>Caspase 9</term>
<term>Proto-Oncogene Proteins c-bcl-2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Benzhydryl Compounds</term>
<term>Phenols</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Maladies testiculaires</term>
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Testicular Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Trigonella</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Extraits de plantes</term>
<term>Trigonella</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Oxidative Stress</term>
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Apoptose</term>
<term>Stress oxydatif</term>
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="induit chimiquement" xml:lang="fr">
<term>Maladies testiculaires</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Testicular Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caspase-3</term>
<term>Caspase-9</term>
<term>Maladies testiculaires</term>
<term>Protéines proto-oncogènes c-bcl-2</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Testicular Diseases</term>
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Extraits de plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Testicular Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Maladies testiculaires</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Extraits de plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Drug Evaluation, Preclinical</term>
<term>Male</term>
<term>Mice, Inbred BALB C</term>
<term>Phytotherapy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Composés benzhydryliques</term>
<term>Mâle</term>
<term>Phytothérapie</term>
<term>Phénols</term>
<term>Souris de lignée BALB C</term>
<term>Évaluation préclinique de médicament</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bisphenol A (BPA), an organic synthetic compound and endocrine disruptor, which majorly cause deleterious effects on male reproductory system. Fenugreek (Trigonella foenum-graecum), associated with Leguminosae family is used as a herbal medicine with potent antioxidant properties. The present study was aimed to scrutinise the preventative role of fenugreek seeds aqueous extract (FSEt) on BPA-induced testicular damage in mice. Study included four different groups of male Balb/c mice: contol (C), fenugreek (FSEt), bisphenol A (BPA) and fenugreek + bisphenol A (FSEt + BPA). After two months of treatment, assessment of sperm parameters, antioxidant defence system, histopathological studies, germ cell count and gene expression of intrinsic apoptotic pathway were carried out. Administration of FSEt improved the damage caused by BPA as indicated by improved sperm parameters. FSEt-administered mice showed improvement in the histoarchitecture compared with BPA-administered animals. In addition, fenugreek treatment showed reduced levels of malondialdehyde and elevated levels of antioxidant enzymes. Expression studies of apoptotic markers revealed a significant decrease in the expression of Bcl-2 and significant increase in caspase-9 and caspase-3. However, FSEt restored the deleterious effects caused by BPA. The current findings plausibly might have promising protective role against BPA-induced testicular damage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31793690</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1439-0272</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Andrologia</Title>
<ISOAbbreviation>Andrologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Studies on the phytomodulatory potential of fenugreek (Trigonella foenum-graecum) on bisphenol-A induced testicular damage in mice.</ArticleTitle>
<Pagination>
<MedlinePgn>e13492</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/and.13492</ELocationID>
<Abstract>
<AbstractText>Bisphenol A (BPA), an organic synthetic compound and endocrine disruptor, which majorly cause deleterious effects on male reproductory system. Fenugreek (Trigonella foenum-graecum), associated with Leguminosae family is used as a herbal medicine with potent antioxidant properties. The present study was aimed to scrutinise the preventative role of fenugreek seeds aqueous extract (FSEt) on BPA-induced testicular damage in mice. Study included four different groups of male Balb/c mice: contol (C), fenugreek (FSEt), bisphenol A (BPA) and fenugreek + bisphenol A (FSEt + BPA). After two months of treatment, assessment of sperm parameters, antioxidant defence system, histopathological studies, germ cell count and gene expression of intrinsic apoptotic pathway were carried out. Administration of FSEt improved the damage caused by BPA as indicated by improved sperm parameters. FSEt-administered mice showed improvement in the histoarchitecture compared with BPA-administered animals. In addition, fenugreek treatment showed reduced levels of malondialdehyde and elevated levels of antioxidant enzymes. Expression studies of apoptotic markers revealed a significant decrease in the expression of Bcl-2 and significant increase in caspase-9 and caspase-3. However, FSEt restored the deleterious effects caused by BPA. The current findings plausibly might have promising protective role against BPA-induced testicular damage.</AbstractText>
<CopyrightInformation>© 2019 Blackwell Verlag GmbH.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kaur</LastName>
<ForeName>Sarvnarinder</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9279-1855</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Panjab University, Chandigarh, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sadwal</LastName>
<ForeName>Shilpa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Panjab University, Chandigarh, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Andrologia</MedlineTA>
<NlmUniqueID>0423506</NlmUniqueID>
<ISSNLinking>0303-4569</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001559">Benzhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019253">Proto-Oncogene Proteins c-bcl-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D053148">Caspase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D053453">Caspase 9</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MLT3645I99</RegistryNumber>
<NameOfSubstance UI="C006780">bisphenol A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001559" MajorTopicYN="N">Benzhydryl Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053148" MajorTopicYN="N">Caspase 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053453" MajorTopicYN="N">Caspase 9</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008517" MajorTopicYN="Y">Phytotherapy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019253" MajorTopicYN="N">Proto-Oncogene Proteins c-bcl-2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013733" MajorTopicYN="N">Testicular Diseases</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013737" MajorTopicYN="N">Testis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029910" MajorTopicYN="N">Trigonella</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">antioxidants</Keyword>
<Keyword MajorTopicYN="N">apoptosis</Keyword>
<Keyword MajorTopicYN="N">bisphenol A</Keyword>
<Keyword MajorTopicYN="N">fenugreek</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31793690</ArticleId>
<ArticleId IdType="doi">10.1111/and.13492</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Ajina, T., Ammar, O., Haouas, Z., Sallem, A., Ezzi, L., Grissa, I., … Mehdi, M. (2017). Assessment of human sperm DNA integrity using two cytochemical tests: Acridine orange test and toluidine blue assay. Andrologia, 49(10), e12765. https://doi.org/10.1111/and.12765</Citation>
</Reference>
<Reference>
<Citation>Alboghobeish, S., Mahdavinia, M., Zeidooni, L., Samimi, A., Oroojan, A. A., Alizadeh, S., … Khorsandi, L. (2019). Efficiency of naringin against reproductive toxicity and testicular damages induced by bisphenol A in rats. Iranian Journal of Basic Medical Sciences, 22(3), 315.</Citation>
</Reference>
<Reference>
<Citation>Arambula, S. E., Jima, D., & Patisaul, H. B. (2018). Prenatal bisphenol A (BPA) exposure alters the transcriptome of the neonate rat amygdala in a sex-specific manner: A CLARITY-BPA consortium study. Neurotoxicology, 65, 207-220. https://doi.org/10.1016/j.neuro.2017.10.005</Citation>
</Reference>
<Reference>
<Citation>Baxter, A., Mittler, R., & Suzuki, N. (2013). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229-1240. https://doi.org/10.1093/jxb/ert375</Citation>
</Reference>
<Reference>
<Citation>Cai, W., Ji, Y., Song, X., Guo, H., Han, L., Zhang, F., … Xu, M. (2017). Effects of glyphosate exposure on sperm concentration in rodents: A systematic review and meta-analysis. Environmental Toxicology and Pharmacology, 55, 148-155. https://doi.org/10.1016/j.etap.2017.07.015</Citation>
</Reference>
<Reference>
<Citation>Cariati, F., D'Uonno, N., Borrillo, F., Iervolino, S., Galdiero, G., & Tomaiuolo, R. (2019). Bisphenol a: An emerging threat to male fertility. Reproductive Biology and Endocrinology, 17(1), 6. https://doi.org/10.1186/s12958-018-0447-6</Citation>
</Reference>
<Reference>
<Citation>Driver, A. S., Kodavanti, P. R. S., & Mundy, W. R. (2000). Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicology and Teratology, 22(2), 175-181. https://doi.org/10.1016/S0892-0362(99)00069-0</Citation>
</Reference>
<Reference>
<Citation>Gandhi, J., Hernandez, R. J., Chen, A., Smith, N. L., Sheynkin, Y. R., Joshi, G., & Khan, S. A. (2017). Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote, 25(2), 103-110. https://doi.org/10.1017/S0967199417000028</Citation>
</Reference>
<Reference>
<Citation>Goncalves, G. D., Semprebon, S. C., Biazi, B. I., Mantovani, M. S., & Fernandes, G. S. A. (2018). Bisphenol a reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reproductive Toxicology, 76, 26-34. https://doi.org/10.1016/j.reprotox.2017.12.002</Citation>
</Reference>
<Reference>
<Citation>Goyal, Y., Koul, A., & Ranawat, P. (2019). Ellagic acid ameliorates cisplatin toxicity in chemically induced colon carcinogenesis. Molecular and Cellular Biochemistry, 453(1-2), 205-215. https://doi.org/10.1007/s11010-018-3446-1</Citation>
</Reference>
<Reference>
<Citation>Hales, D. B., Allen, J. A., Shankara, T., Janus, P., Buck, S., Diemer, T., & Hales, K. H. (2005). Mitochondrial function in Leydig cell steroidogenesis. Annals of the New York Academy of Sciences, 1061(1), 120-134. https://doi.org/10.1196/annals.1336.014</Citation>
</Reference>
<Reference>
<Citation>Hamza, A. A., Elwy, H. M., & Badawi, A. M. (2016). Fenugreek seed extract attenuates cisplatin-induced testicular damage in W istar rats. Andrologia, 48(2), 211-221.</Citation>
</Reference>
<Reference>
<Citation>Ibtisham, F., Wu, J., Xiao, M., An, L., Banker, Z., Nawab, A., … Li, G. (2017). Progress and future prospect of in vitro spermatogenesis. Oncotarget, 8(39), 66709.</Citation>
</Reference>
<Reference>
<Citation>Jurewicz, J., Hanke, W., Radwan, M., & Bonde, J. (2009). Environmental factors and semen quality. International Journal of Occupational Medicine and Environmental Health, 22(4), 305-329. https://doi.org/10.2478/v10001-009-0036-1</Citation>
</Reference>
<Reference>
<Citation>Kaur, S., Saluja, M., & Bansal, M. P. (2018). Bisphenol A induced oxidative stress and apoptosis in mice testes: Modulation by selenium. Andrologia, 50(3), 12834. https://doi.org/10.1111/and.12834</Citation>
</Reference>
<Reference>
<Citation>Khalaf, A. A., Ahmed, W. M. S., Moselhy, W. A., Abdel-Halim, B. R., & Ibrahim, M. A. (2019). Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Human & Experimental Toxicology, 38(4), 398-408. https://doi.org/10.1177/0960327118816134</Citation>
</Reference>
<Reference>
<Citation>Khalil, W. K., Roshdy, H. M., & Kassem, S. M. (2016). The potential therapeutic role of Fenugreek saponin against Alzheimer's disease: Evaluation of apoptotic and acetylcholinesterase inhibitory activities. Journal of Applied Pharmaceutical Science, 6(09), 166-173. https://doi.org/10.7324/JAPS.2016.60925</Citation>
</Reference>
<Reference>
<Citation>Lawrence, R. A., & Burk, R. F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71(4), 952-958. https://doi.org/10.1016/0006-291X(76)90747-6</Citation>
</Reference>
<Reference>
<Citation>Leblond, C. P., & Clermont, Y. (1952). Definition of the stages of the cycle of the seminiferous epithelium in the rat. Annals of the New York Academy of Sciences, 55(4), 548-573. https://doi.org/10.1111/j.1749-6632.1952.tb26576.x</Citation>
</Reference>
<Reference>
<Citation>Lin, Y., Sun, X., Qiu, L., Wei, J., Huang, Q., Fang, C., … Dong, S. (2013). Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death & Disease, 4(1), 460. https://doi.org/10.1038/cddis.2012.206</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Kakani, R., & Nair, M. G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4), 1187-1192. https://doi.org/10.1016/j.foodchem.2011.09.102</Citation>
</Reference>
<Reference>
<Citation>Mahdavinia, M., Alizadeh, S., Vanani, A. R., Dehghani, M. A., Shirani, M., Alipour, M., … Asl, S. R. (2019). Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. Iranian Journal of Basic Medical Sciences, 22(5), 499.</Citation>
</Reference>
<Reference>
<Citation>Mir, M. A., Sawhney, S. S., & Jassal, M. M. S. (2013). Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker Journal of Pharmacy and Pharmocology, 2(1), 1-5.</Citation>
</Reference>
<Reference>
<Citation>Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica Et Biophysica Acta (BBA) - General Subjects, 582(1), 67-78. https://doi.org/10.1016/0304-4165(79)90289-7</Citation>
</Reference>
<Reference>
<Citation>Neha, S., Anand, K., & Sunanda, P. (2019). Administration of fenugreek seed extract produces better effects in glibenclamide-induced inhibition in hepatic lipid peroxidation: An in vitro study. Chinese Journal of Integrative Medicine, 25(4), 278-284. https://doi.org/10.1007/s11655-015-1793-z</Citation>
</Reference>
<Reference>
<Citation>Pradeep, S. R., & Srinivasan, K. (2017). Amelioration of oxidative stress by dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats. Applied Physiology, Nutrition, and Metabolism, 42(8), 816-828.</Citation>
</Reference>
<Reference>
<Citation>Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95-105. https://doi.org/10.1016/j.canlet.2016.03.042</Citation>
</Reference>
<Reference>
<Citation>Qiu, W., Chen, J., Li, Y., Chen, Z., Jiang, L., Yang, M., & Wu, M. (2016). Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 130, 93-102. https://doi.org/10.1016/j.ecoenv.2016.04.014</Citation>
</Reference>
<Reference>
<Citation>Roychoudhury, S., Saha, M. R., & Saha, M. M. (2019). Environmental toxicants and male reproductive toxicity: Oxidation-reduction potential as a new marker of oxidative stress in infertile men. In K. Kesari (Ed.), Networking of Mutagens in Environmental Toxicology. Environmental Science and Engineering. Cham, Switzerland: Springer.</Citation>
</Reference>
<Reference>
<Citation>Sakr, S. A., El-shenawy, S. M., & Al-Shabka, A. M. (2012). Aqueous fenugreek seed extract ameliorates adriamycin-induced cytotoxicity and testicular alterations in albino rats. Reproductive Sciences, 19(1), 70-80. https://doi.org/10.1177/1933719111413301</Citation>
</Reference>
<Reference>
<Citation>Sauler, M., Bazan, I. S., & Lee, P. J. (2019). Cell death in the lung: The apoptosis-necroptosis axis. Annual Review of Physiology, 81, 375-402. https://doi.org/10.1146/annurev-physiol-020518-114320</Citation>
</Reference>
<Reference>
<Citation>Sengupta, P., Borges, E. Jr, Dutta, S., & Krajewska-Kulak, E. (2018). Decline in sperm count in European men during the past 50 years. Human & Experimental Toxicology, 37(3), 247-255. https://doi.org/10.1177/0960327117703690</Citation>
</Reference>
<Reference>
<Citation>Shirani, M., Alizadeh, S., Mahdavinia, M., & Dehghani, M. A. (2019). The ameliorative effect of quercetin on bisphenol A-induced toxicity in mitochondria isolated from rats. Environmental Science and Pollution Research, 26(8), 7688-7696. https://doi.org/10.1007/s11356-018-04119-5</Citation>
</Reference>
<Reference>
<Citation>Skinner, M. K., Manikkam, M., & Guerrero-Bosagna, C. (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology & Metabolism, 21(4), 214-222. https://doi.org/10.1016/j.tem.2009.12.007</Citation>
</Reference>
<Reference>
<Citation>Su, Y., Quan, C., Li, X., Shi, Y., Duan, P., & Yang, K. (2018). Mutual promotion of apoptosis and autophagy in prepubertal rat testes induced by joint exposure of bisphenol A and nonylphenol. Environmental Pollution, 243, 693-702. https://doi.org/10.1016/j.envpol.2018.09.030</Citation>
</Reference>
<Reference>
<Citation>Ullah, H., Ambreen, A., Ahsan, N., & Jahan, S. (2017). Bisphenol S induces oxidative stress and DNA damage in rat spermatozoa in vitro and disrupts daily sperm production in vivo. Toxicological & Environmental Chemistry, 99(5-6), 953-965.</Citation>
</Reference>
<Reference>
<Citation>Vecoli, C., Montano, L., & Andreassi, M. G. (2016). Environmental pollutants: Genetic damage and epigenetic changes in male germ cells. Environmental Science and Pollution Research, 23(23), 23339-23348. https://doi.org/10.1007/s11356-016-7728-4</Citation>
</Reference>
<Reference>
<Citation>Wani, S. A., & Kumar, P. (2018). Fenugreek: A review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences, 17(2), 97-106. https://doi.org/10.1016/j.jssas.2016.01.007</Citation>
</Reference>
<Reference>
<Citation>Wills, E. (1966). Mechanisms of lipid peroxide formation in animal tissues. Biochemical Journal, 99(3), 667. https://doi.org/10.1042/bj0990667</Citation>
</Reference>
<Reference>
<Citation>Wisniewski, P., Romano, R. M., Kizys, M. M., Oliveira, K. C., Kasamatsu, T., Giannocco, G., … Romano, M. A. (2015). Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicology, 329, 1-9. https://doi.org/10.1016/j.tox.2015.01.002</Citation>
</Reference>
<Reference>
<Citation>Wu, L. H., Zhang, X. M., Wang, F., Gao, C. J., Chen, D., Palumbo, J. R., … Zeng, E. Y. (2018). Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Science of the Total Environment, 615, 87-98. https://doi.org/10.1016/j.scitotenv.2017.09.194</Citation>
</Reference>
<Reference>
<Citation>Yadav, M., Lavania, A., Tomar, R., Prasad, G. B. K. S., Jain, S., & Yadav, H. (2010). Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Applied Biochemistry and Biotechnology, 160(8), 2388-2400. https://doi.org/10.1007/s12010-009-8799-1</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Kaur, Sarvnarinder" sort="Kaur, Sarvnarinder" uniqKey="Kaur S" first="Sarvnarinder" last="Kaur">Sarvnarinder Kaur</name>
</noRegion>
<name sortKey="Sadwal, Shilpa" sort="Sadwal, Shilpa" uniqKey="Sadwal S" first="Shilpa" last="Sadwal">Shilpa Sadwal</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantDefPeptideV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000036 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000036 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantDefPeptideV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31793690
   |texte=   Studies on the phytomodulatory potential of fenugreek (Trigonella foenum-graecum) on bisphenol-A induced testicular damage in mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31793690" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantDefPeptideV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:44:45 2020. Site generation: Sat Nov 21 14:45:14 2020